/v

AARHUS UNIVERSITET

Microservices and DevOps

Scalable Microservices
Resilience4J: A Stability Pattern library

Henrik Baerbak Christensen

/v History

AARHUS UNIVERSITET
* Hystrix,
— Developed by NetFlix

Wl

D
7

\§ DEFEND YOUR APP
nai\

Introduction

Hystrix is a latency and fault tolerance library designed to isolate points of access to remote systems, services and 3rd party
libraries, stop cascading failure and enable resilience in complex distributed systems where failure is inevitable.

Hello World!

[‘ e n t r aI H yst r I X a b StraCtI O n . Code to be isolated is wrapped inside the run() method of a HystrixCommand similar to the following:
n

public class CommandHelloWorld extends HystrixCommand<String> {

— The Command pattern

public CommandHelloWorld(String name) {
super(HystrixCommandGroupKey .Factory.asKey(“ExampleGroup™));

« Make a method into an object e

de
ed string run() { B0V
return "Hello " + name + "!"; pro
5
1 I

. .
o D I S C I al m e r This command could be used like this:

String s = new CommandHelloWorld("Bob").execute();
Future<String> s - new CommandHelloWorld("Bob").queue();

— I h ave n ever uSed it Observable<String> s - new CommandHelloWorld("Bob").observe();

String getFallback() {
urn "Hello Failure " + name + "!";

CS@AU Henrik Baerbak Christensen 2

eV Resilience4]

AARHUS UNIVERSITET
e ... IS

— A lightweight, easy-to-use fault tolerance library inspired by
Hystrix, but designed for Java 8 and functional programming.

* You can pick and choose just the piece you want
— CircuitBreaker: Nygard’s pattern in it's frequency form

— Bulkhead: Limit number of concurrent executions

— RateLimiter: Limit rate of requests (or queue them)

— Retry: Retry call N times with M mS delay between
— TimeLimiter: Nygard’s Fail Fast pattern

— Cache: You guessed it ©

/v Circuit Breaker

AARHUS UNIVERSITET

 The standard state machine

— Not count of failures, but
failure rate

[failure rate above a threshold]

CLOSED

[after wait duration]

[failure rate below s threshold] [failure rate above a threshold]

HALF_OPEN

— Two ways of calculating rate
« Count-based sliding window
— One out of last 5 calls failed = 20% failure rate
» Time-based sliding window
— 5 seconds is 5 ‘1 second epoch buckets’

» Each bucket aggregate all calls that second and mark ‘pass/fail’
— 20% failure rate = 1 out of 5 last buckets was a fall

CS@AU Henrik Baerbak Christensen 4

Vav Circuit Breaker

AARHUS UNIVERSITET

* Closed to Open state transitions happen when
— Failure rate is exceeded
— As well as slow response rate exceeded

 So both failed’ and ‘slow’ executions are recorded!

 |f call to CB in OPEN state, then

— CallNotPermittedException is thrown
« Catch it to provide the ‘safe failure mode’ response

Vav Circuit Breaker

AARHUS UNIVERSITET

« Half Open state

— You can configure the number of calls to make in half open
« Contrast Nygard, who has this number at a single call

— Example: Half Open calls setto 3

» Three calls are made, and standard failure rate computation then is
used to determine state change to either Open or Closed

« Forth and consecutive calls are handled as Open calls
— Throw the CallNotPermittedException exception

/v Circuit Breaker

AARHUS UNIVERSITET

* Note: The CB does NOT itself implement time out

— Setting the slow response time to 10 seconds
» slowCallDurationThreshold

— Will still make the CB wait for 8 minutes, if the call really takes 8
minutes to complete!

« Solution
— Use your REST client library’s time out facilities

Unirest.setTimeouts(long connectionTimeout, long socketTimeout);

— Or — use the Resilience4J’s TimeLimiter

o Circuit Breaker

AARHUS UNIVERSITET
« CB can be configured in a zillion ways ® ©

'/ Create a custom configuration for a CircuitBreaker

CircuitBreakerConfig circuitBreakerConfig = CircuitBreakerConfig. custom()

.failureRateThreshold(50)

.slowCallRateThreshold(50)

.waitDurationInOpenState(Duration.ofMil1is(1000))

.slowCal1DurationThreshold(Duration. ofSeconds(2))

. permittediNumber0fCallsInHalfOpenstate(3)

. minimumNumber0fCalls(10)

. s1idingWindowType(S1idingWindowType. TIME_BASED)

.s1idingWindowsize(5)

.recordException(e ->= INTERMAL_SERVER_ERROR
.equals(getResponse().getstatus()))

.recordExceptions (I0OException. class, TimeoutException.class)

.ignoreExceptions(BusinessException.class, OtherBusinessException.class)

L build();

/{ Create a CircuitBreakerRegistry with a custom global configuration
CircuitBreakerRegistry circuitBreakerRegistry =
CircuitBreakerRegistry.of (circuitBreakerConfig);

' Get or create a CircuitBreaker from the CircuitBreakerRegistry
with the global default configuration

CircuitBreaker circuitBreakerWithDefaultConfig =
circuitBreakerRegistry. circuitBreaker ("namel™);

/ Get or create a CircuitBreaker from the CircuitBreakerRegistry

S/ with a custom configuration
CircuitBreaker circuitBreakerWithCustomConfig = circuitBreakerRegistry
.circuitBreaker ("name2”, circuitBreakerConfig);

CS@AU Henrik Baerbak Christensen 8

/v “Decorators”’

AARHUS UNIVERSITET

* Resilience4J relies on the functional version of
Decorator pattern, using Java8 functional abstractions
— Meaning they can be ‘onion-like’ wrapped

el SUpplier<String> supplier = () -» backend5Service

Integration pOint .doSomething(paraml, param2)

// Decorate your call to backendSerwvice.doSomething()

ff with a Bulkhead, CircuitBreaker and Retry

Decorators ='-*r:n:rte: yn:.:nu will need the r"es_,'i'l'ier'lce-’—j—aﬂ dependenc'_-,.f for th'is.
Supplier<String> decoratedSupplier = Decorators.ofSupplier(supplier)
|ntr0duce CB, LwithCircuitBreaker (circuitBreaker)
.withBulkhead(bulkhead)
bulkhead, and retry JE—————
.decorate();

{ Execute the decorated supplier and recover from any exception

Actual Ca” Site String result = Try.ofSupplier(decoratedSupplier)
.recover (throwable -> "Hello from Recovery™).get();

CS@AU Henrik Baerbak Christensen 9

eV “Decorators”’

AARHUS UNIVERSITET

« They call it ‘decorators’ but it find it is actually the ‘proxy’
pattern

« Decorator: Add additional responsibilities to object

* Proxy: Provide a placeholder that controls access to
object

* Anyway — they are behaviorally equivalent...

/v Coding It

AARHUS UNIVERSITET

« Each integration point (= call to remote service) must be
defined as a Java8 functional abstraction
— Callable, Supplier, Function, ...

« Example: QuoteService’s getQuote method

— Declare a ‘Function’
private final|Function<Integer, QuoteRecord=| cbGetQuote;

— And create it as a decorator on a real quote service call

circuitBreaker = circuitBreakerRegistry.circuitBreaker(name: "quote");
cbGetQuote = CircuitBreaker
.decorateFunction(circuitBreaker, quoteService::getQuote);

CS@AU Henrik Baerbak Christensen 11

/v

Coding It
AARHUS UNIVERSITET

« The functional approach and reliance on Varv library is a

bit of a ‘challenge’ for old-school procedural coders like
me...

« But there is something about it

R result = Try(() -> mightFail())
.recover(x -> ...)

.getOrElse(defaultValue);

CS@AU Henrik Baerbak Christensen 12

/v Example

AARHUS UNIVERSITET
* Old-school = | wrote this initially ©

@0verride
public QuoteRecord getQuote(int gquoteIndex) {]
QuoteRecord record = null;
try {
record = chGetQuote.apply(quoteIndex);
} catch (CallMotPermittedException exp) {
record = new QuoteRecord(number -1,
quote: "**% Quote service not available, sorry. (" + circuitBreaker.getState() + " Circuit) ##=*»,
author: "Circuitbreaker™,
HttpServletResponse.SC SERVICE UNAVAILABLE);

The actual remote call

}

return record;

« The Varv way has quite some value, though ©

@dverride
public QuoteRecord getQuote(int quoteIndex) {
QuoteRecord record = Try(() -» cbhGetQuote.apply(quoteIndex))
.recover(throwable -> new QuoteRecord(number -1,
guote: "**¥ Quote service not available, sorry. (" + circuitBreaker.getState() + " Circuit) ##*",
author: "Circuitbreaker”,
HttpServletResponse.SC SERVICE UNAVAILABLE)).get();
return record;

CS@AU Henrik Baerbak Christensen 13

/v

AARHUS UNIVERSITET

Monitorability

Resilience/Stability/Availability
Monitoring

bt Monitoring your CBs

AARHUS UNIVERSITET
« CB states tell a lot about the state of your architecture

HYSTRIX

Y DEFEND YOUR APP

Hystrix Stream: = s Smsns

Circuit Sort: Eror then Volume | Alphabetical | Volume | Error | Mean | Median 190199 199.5

Success | | Short-Circuited | | Rejected | Failure | Error %
3 - 3
\ 0|0 M 0|0
s 0 ™~ . 0
! oais V" My 1Y 0./s
0.3/s LT 4 0.3/s

reuit Closed Circutt Closed

{osts 1 1ms Hasts 1 24ms
Medan Oms ims Medan 13ms 75ms
Mean Oms ims Mean 16ms 75ms

3
0|0
- ads A 0
~ a1 I 03/s
N ' 043/s
Circuit Closed
{osts 1 22ms
Medan 13ms 25ms
Wean 14ms 25ms
Thread Pools Sort: Alphabetical | Volume |
0.6/s 0.4/s
0.6/s 0.4/s
3 1] 1
& 0 4
5 10 5

CS@AU Henrik Baerbak Christensen 15

VeV Can Do

AARHUS UNIVERSITET
* Resilience4d integrate with Micrometer and Grafana

CS@AU Henrik Baerbak Christensen

16

/v Micrometer

AARHUS UNIVERSITET

« Micrometer is Dropwizard’s replacement
— They say themselves ©

« Micrometer integrate with Humio ©
— Probably have to have the paid version...

MeterRegistry meterRegistry = new SimpleMeterRegistry();
CircuitBreakerRegistry circuitBreakerRegistry =

d The Newman CircuitBreakerRegistry. ofDefaults();

CircuitBreaker foo = circuitBreakerRegistry

Data Pu mpS pattern . circuitBreaker ("backendA™);

(p 96 ff, ‘modernization, slides) CircuitBreaker boo = circuitBreakerRegistry

.circuitBreaker("backendB™);
TaggedCircuitBreakerMetrics

.ofCircuitBreakerRegistry({circuitBreakerRegistry)
.bindTo{meterRegistry)

CS@AU Henrik Baerbak Christensen 17

/v Summary
AARHUS UNIVERSITET

« Cool stuff...
— Avoid a lot of hand-coding myself

 But
— Documentation assumes you know your patterns beforehand
» Delve into tech detail, misses the intro and big picture ®
— A bit of a learning curve

— Zillion handles to crank
— And forced to learn bits of Java8 functional programming style...

