
Microservices and DevOps

Scalable Microservices
Resilience4J: A Stability Pattern library

Henrik Bærbak Christensen



History

• Hystrix,

– Developed by NetFlix

• Central Hystrix abstraction: 

– The Command pattern

• Make a method into an object

• Disclaimer

– I have never used it…

CS@AU Henrik Bærbak Christensen 2



Resilience4J

• … is

– A lightweight, easy-to-use fault tolerance library inspired by 

Hystrix, but designed for Java 8 and functional programming.

• You can pick and choose just the piece you want

– CircuitBreaker: Nygard’s pattern in it’s frequency form

– Bulkhead: Limit number of concurrent executions

– RateLimiter: Limit rate of requests (or queue them)

– Retry: Retry call N times with M mS delay between

– TimeLimiter: Nygard’s Fail Fast pattern

– Cache: You guessed it ☺

CS@AU Henrik Bærbak Christensen 3



Circuit Breaker

• The standard state machine

– Not count of failures, but

failure rate

– Two ways of calculating rate

• Count-based sliding window

– One out of last 5 calls failed = 20% failure rate

• Time-based sliding window

– 5 seconds is 5 ‘1 second epoch buckets’

» Each bucket aggregate all calls that second and mark ‘pass/fail’

– 20% failure rate = 1 out of 5 last buckets was a fail

CS@AU Henrik Bærbak Christensen 4



Circuit Breaker

• Closed to Open state transitions happen when

– Failure rate is exceeded

– As well as slow response rate exceeded

• So both ‘failed’ and ‘slow’ executions are recorded!

• If call to CB in OPEN state, then

– CallNotPermittedException is thrown

• Catch it to provide the ‘safe failure mode’ response

CS@AU Henrik Bærbak Christensen 5



Circuit Breaker

• Half Open state

– You can configure the number of calls to make in half open

• Contrast Nygard, who has this number at a single call

– Example: Half Open calls set to 3

• Three calls are made, and standard failure rate computation then is 

used to determine state change to either Open or Closed

• Forth and consecutive calls are handled as Open calls 

– Throw the CallNotPermittedException exception

CS@AU Henrik Bærbak Christensen 6



Circuit Breaker

• Note: The CB does NOT itself implement time out

– Setting the slow response time to 10 seconds

• slowCallDurationThreshold

– Will still make the CB wait for 8 minutes, if the call really takes 8 

minutes to complete!

• Solution

– Use your REST client library’s time out facilities

– Or – use the Resilience4J’s TimeLimiter

CS@AU Henrik Bærbak Christensen 7



Circuit Breaker

• CB can be configured in a zillion ways  ☺

CS@AU Henrik Bærbak Christensen 8



“Decorators”

• Resilience4J relies on the functional version of 

Decorator(*) pattern, using Java8 functional abstractions

– Meaning they can be ‘onion-like’ wrapped

CS@AU Henrik Bærbak Christensen 9

Integration point

Decorators 
introduce CB, 

bulkhead, and retry

Actual call site



“Decorators”

• They call it ‘decorators’ but it find it is actually the ‘proxy’ 

pattern

• Decorator: Add additional responsibilities to object

• Proxy: Provide a placeholder that controls access to 

object

• Anyway – they are behaviorally equivalent…

CS@AU Henrik Bærbak Christensen 10



Coding It

• Each integration point (= call to remote service) must be 

defined as a Java8 functional abstraction 

– Callable, Supplier, Function, …

• Example: QuoteService’s getQuote method

– Declare a ‘Function’

– And create it as a decorator on a real quote service call

CS@AU Henrik Bærbak Christensen 11



Coding It

• The functional approach and reliance on Varv library is a 

bit of a ‘challenge’ for old-school procedural coders like 

me…

• But there is something about it

CS@AU Henrik Bærbak Christensen 12



Example

• Old-school = I wrote this initially ☺

• The Varv way has quite some value, though ☺

CS@AU Henrik Bærbak Christensen 13

The actual remote call



Monitorability

Resilience/Stability/Availability

Monitoring



Monitoring your CBs

• CB states tell a lot about the state of your architecture

CS@AU Henrik Bærbak Christensen 15



Can Do

• Resilience4J integrate with Micrometer and Grafana

CS@AU Henrik Bærbak Christensen 16



Micrometer

• Micrometer is Dropwizard’s replacement

– They say themselves ☺

• Micrometer integrate with Humio ☺

– Probably have to have the paid version…

• The Newman

Data Pumps pattern
(p 96 ff, ‘modernization’ slides)

CS@AU Henrik Bærbak Christensen 17



Summary

• Cool stuff…

– Avoid a lot of hand-coding myself

• But

– Documentation assumes you know your patterns beforehand

• Delve into tech detail, misses the intro and big picture 

– A bit of a learning curve

– Zillion handles to crank

– And forced to learn bits of Java8 functional programming style…

CS@AU Henrik Bærbak Christensen 18


